Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.457
Filtrar
1.
Environ Geochem Health ; 46(4): 126, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483641

RESUMO

The migration of organochlorine pesticides (OCPs) and cypermethrin residues from internal organs to edible tissues of ice-held Labeo rohita (rohu) was investigated in this study. The liver (246 µg/kg) had the highest level of ∑OCP residues, followed by the gills (226 µg/kg), intestine (167 µg/kg), and muscle tissue (54 µg/kg). The predominant OCPs in the liver and gut were endosulfan (53-66 µg/kg), endrin (45-53 µg/kg), and dichloro-diphenyl-trichloroethane (DDT; 26-35 µg/kg). The ∑OCP residues in muscle increased to 152 µg/kg when the entire rohu was stored in ice, but they decreased to 129 µg/kg in gill tissues. On days 5 and 9, the total OCPs in the liver increased to 317 µg/kg and 933 µg/kg, respectively. Beyond day 5 of storage, total internal organ disintegration had led to an abnormal increase in OCP residues of liver-like mass. Despite a threefold increase in overall OCP residues by day 9, accumulation of benzene hexachloride (BHC) and heptachlor was sixfold, endrin and DDT were fourfold, aldrin was threefold, and endosulfan and cypermethrin were both twofold. Endosulfan, DDT, endrin, and heptachlor were similarly lost in the gills at a rate of 40%, while aldrin and BHC were also lost at 60 and 30%, respectively. The accumulation of OCP residues in tissues has been attributed to particular types of fatty acid derivatives. The study concluded that while pesticide diffusion to edible tissues can occur during ice storage, the levels observed were well below the allowable limit for endosulfan, endrin, and DDT.


Assuntos
Hidrocarbonetos Clorados , Resíduos de Praguicidas , Praguicidas , Piretrinas , Animais , Aldrina/análise , DDT/análise , Endossulfano/toxicidade , Endossulfano/análise , Endrin , Monitoramento Ambiental , Heptacloro/análise , Hexaclorocicloexano , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Gelo , Resíduos de Praguicidas/análise , Praguicidas/toxicidade , Praguicidas/análise
2.
Environ Pollut ; 347: 123676, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442821

RESUMO

Organochlorine (OC) and organophosphorus (OP) pesticides such as chlorpyrifos (CPF) and endosulfan (ES) have been associated with a plethora of adverse health effects. Helicobacter pylori (H. pylori) infection can lead to gastrointestinal diseases by regulating several cellular processes. Thus, the current study focuses on the effect of the co-exposure to pesticides and H. pylori on gastric epithelial cells. We have used the in-silico approach to determine the interactive potential of pesticides and their metabolites with H. pylori-associated proteins. Further, various in-vitro methods depict the potential of ES in enhancing the virulence of H. pylori. Our results showed that ES along with H. pylori affects the mitochondrial dynamics, increases the transcript expression of mitochondrial fission genes, and lowers the mitochondrial membrane potential and biomass. They also promote inflammation and lower oxidative stress as predicted by ROS levels. Furthermore, co-exposure induces the multi-nucleated cells in gastric epithelial cells. In addition, ES along with H. pylori infection follows the extrinsic pathway for apoptotic signaling. H. pylori leads to the NF-κB activation which in turn advances the ß-catenin expression. The expression was further enhanced in the co-exposure condition and even more prominent in co-exposure with ES-conditioned media. Thus, our study demonstrated that pesticide and their metabolites enhance the pathogenicity of H. pylori infection.


Assuntos
Clorpirifos , Helicobacter pylori , Praguicidas , Helicobacter pylori/genética , Mucosa Gástrica/metabolismo , Clorpirifos/toxicidade , Clorpirifos/metabolismo , Virulência , Endossulfano/toxicidade , Células Epiteliais , Praguicidas/metabolismo
3.
Chemosphere ; 352: 141337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307329

RESUMO

The world's attention is drawn to the widespread ingestion, toxicity, and bioaccumulation of the Atrazine (AT) and Endosulfan (ES). Pesticides have been proven to have endocrine-disrupting, genotoxic, and persistent characteristics. In this work, the structural design of green synthesized NiFe2O4 is incorporated in rice husk biochar to form BC@NiFe2O4 nanocomposite. Powder X-ray diffraction and microscopic analysis confirmed the semi-crystalline nature of BC@NiFe2O4 reduced due to the incorporation of amorphous BC. The green BC@NiFe2O4 nanocomposite degraded AT and ES up to 98 % and 92 %, respectively. The maximum degradation achieved by BC@NiFe2O4 nanocomposite with minimum pollutants concentration (50 mg L-1) with 10 mg catalyst dose at acidic pH in natural sunlight because of the higher negative value of zeta potential (-26.4 mV) and lower band gap (2.5 eV). The degradation process involves first-order kinetics followed by initial Langmuir adsorption. The presence of various radical quenchers (t-BuOH, p-BZQ, Na2EDTA) has led to the conclusion that hydroxyl radicals play a significant role in the degradation of the toxic substances AT and ES. Additionally, a green-fabricated BC@NiFe2O4 nanocomposite has exhibited exceptional efficiency in degrading AT and ES pollutants in actual wastewater samples. Furthermore, this nanocomposite has demonstrated outstanding sustainability and cost-effectiveness, maintaining its effectiveness for up to eight cycles without a noticeable reduction in activity. In summary, due to its favorable surface characteristics, the environmentally friendly BC@NiFe2O4 nanocomposite holds excellent promise as a unique and potential photocatalyst for various industrial applications.


Assuntos
Atrazina , Carvão Vegetal , Poluentes Ambientais , Nanocompostos , Praguicidas , Águas Residuárias , Agricultura , Endossulfano , Catálise
4.
Toxicol Sci ; 198(2): 246-259, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38237923

RESUMO

Early developmental exposure to environmental toxicants may play a role in the risk for developing autism. A variety of pesticides have direct effects on retinoic acid (RA) signaling and as RA signaling has important roles in neurodevelopment, such compounds may cause developmental neurotoxicity through an overlapping adverse outcome pathway. It is hypothesized that a pesticide's embryonic effects on retinoid function may correspond with neurobehavioral disruption later in development. In the current studies, we determined the effects of RA-acting pesticides on neurobehavioral development in zebrafish. Buprofezin and imazalil caused generalized hypoactivity in the larval motility test, whereas chlorothalonil and endosulfan I led to selective hypoactivity and hyperactivity, respectively. With buprofezin, chlorothalonil, and imazalil, hypoactivity and/or novel anxiety-like behaviors persisted in adulthood and buprofezin additionally decreased social attraction responses in adulthood. Endosulfan I did not produce significant adult behavioral effects. Using qPCR analyses of adult brain tissue, we observed treatment-induced alterations in RA synthesis or catabolic genes, indicating persistent changes in RA homeostasis. These changes were compound-specific, with respect to expression directionality, and potential patterns of homeostatic disruption. Results suggest the likely persistence of disruptions in RA signaling well into adulthood and may represent compensatory mechanisms following early life stage exposures. This study demonstrates that early developmental exposure to environmental toxicants that interfere with RA signaling causes short as well as long-term behavioral disruption in a well-established zebrafish behavioral model and expand upon the meaning of the RA adverse outcome pathway, indicating that observed effects likely correspond with the nature of underlying homeostatic effects.


Assuntos
Nitrilas , Praguicidas , Tiadiazinas , Peixe-Zebra , Animais , Tretinoína/toxicidade , Retinoides/farmacologia , Praguicidas/metabolismo , Endossulfano , Comportamento Animal
5.
Proteins ; 92(2): 302-313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864384

RESUMO

Endosulfan is an organochlorine insecticide widely used for agricultural pest control. Many nations worldwide have restricted or completely banned it due to its extreme toxicity to fish and aquatic invertebrates. Arthrobacter sp. strain KW has the ability to degrade α, ß endosulfan and its intermediate metabolite endosulfate; this degradation is associated with Ese protein, a two-component flavin-dependent monooxygenase (TC-FDM). Employing in silico tools, we obtained the 3D model of Ese protein, and our results suggest that it belongs to the Luciferase Like Monooxygenase family (LLM). Docking studies showed that the residues V59, V315, D316, and T335 interact with α-endosulfan. The residues: V59, T60, V315, D316, and T335 are implicated in the interacting site with ß-endosulfan, and the residues: H17, V315, D316, T335, N364, and Q363 participate in the interaction with endosulfate. Topological analysis of the electron density by means of the Quantum Theory of Atoms in Molecules (QTAIM) and the Non-Covalent Interaction (NCI) index reveals that the Ese-ligands complexes are formed mainly by dispersive forces, where Cl atoms have a predominant role. As Ese is a monooxygenase member, we predict the homodimer formation. However, enzymatic studies must be developed to investigate the Ese protein's enzymatic and catalytic activity.


Assuntos
Arthrobacter , Inseticidas , Animais , Endossulfano/química , Endossulfano/metabolismo , Arthrobacter/metabolismo , Biodegradação Ambiental , Inseticidas/química , Inseticidas/metabolismo , Oxigenases de Função Mista
6.
Sci Rep ; 13(1): 18482, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898697

RESUMO

Pesticides are toxic and could negatively impact humans and the ecosystem. The Kitchener Drain is among the longest drains in Egypt and carries a wide range of wastewater from the agriculture sector, which contains pesticides and may pollute the ecosystem. Thus, water quality, human health risk, and pesticide accumulation in African catfish and Nile tilapia from the Kitchener Drain-Egypt. The water and fish samples were collected from Kitchener Drain in Kafr Elsheikh Governorate, Egypt, during the four seasons. The results indicated that heptachlor and diazinon were undetected during the four seasons. However, endosulfan, chlorpyrifos, and dicofol were detected in winter and autumn. Only p,p'-DDT was detected during spring. Endosulfan, heptachlor, and aldrin were detected in Nile tilapia during winter. Only heptachlor and aldrin were detected during spring. Endosulfan, heptachlor, dicofol, p,p'-DDT, chlorpyrifos, and diazinon were detected in the autumn season. In summer, dicofol and p,p'-DDT were detected, while endosulfan, heptachlor p,p'-DDT, aldrin, chlorpyrifos, and diazinon were not detected. In African catfish, endosulfan, heptachlor, dicofol, and p,p'-DDT were detected during winter, while chlorpyrifos, aldrin, and chlorpyrifos, aldrin, and diazinon were not detected. In the spring season, endosulfan, heptachlor, and aldrin were detected. Endosulfan, heptachlor, dicofol, p,p'-DDT, aldrin, chlorpyrifos, and diazinon were detected in the autumn season. Similarly, in the summer season, endosulfan, heptachlor, dicofol, p,p'-DDT, aldrin, chlorpyrifos, and diazinon were detected. The sequence of estimated daily intake (EDI) in Nile tilapia during the four seasons is heptachlor > endosulfan > dicofol > p,p'-DDT > aldrin > diazinon > chlorpyrifos. The sequence of EDI in African catfish during the four seasons is endosulfan > p,p'-DDT > heptachlor > aldrin > dicofol > diazinon > chlorpyrifos. In conclusion, the results confirmed the absence of a hazard index for consuming Nile tilapia and African catfish collected from the Kitchener drain.


Assuntos
Peixes-Gato , Clorpirifos , Ciclídeos , Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Animais , Humanos , Praguicidas/análise , DDT/análise , Aldrina/análise , Hidrocarbonetos Clorados/análise , Endossulfano , Qualidade da Água , Diazinon , Dicofol , Egito , Ecossistema , Heptacloro/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
7.
Environ Sci Technol ; 57(42): 15999-16005, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37831888

RESUMO

Endosulfan is a persistent organochlorine pesticide that was globally distributed before it was banned and continues to cycle in the Earth system. The chemical kinetics of the gas-phase reaction of α-endosulfan with the hydroxyl radical (OH) was studied by means of pulsed vacuum UV flash photolysis and time-resolved resonance fluorescence (FP-RF) as a function of temperature in the range of 348-395 K and led to a second-order rate coefficient kOH = 5.8 × 10-11 exp(-1960K/T) cm3 s-1 with an uncertainty range of 7 × 10-12 exp(-1210K/T) to 4 × 10-10 exp(-2710K/T) cm3 s-1. This corresponds to an estimated photochemical atmospheric half-life in the range of 3-12 months, which is much longer than previously assumed (days to weeks). Comparing the atmospheric concentrations observed after the global ban of endosulfan with environmental multimedia model predictions, we find that photochemical degradation in the atmosphere is slower than the model-estimated biodegradation in soil or water and that the latter limits the total environmental lifetime of endosulfan. We conclude that the lifetimes typically assumed for soil and aquatic systems are likely underestimated and should be revisited, in particular, for temperate and warm climates.


Assuntos
Endossulfano , Praguicidas , Radical Hidroxila , Temperatura , Solo , Cinética
8.
Environ Res ; 238(Pt 1): 117127, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716396

RESUMO

Endosulfan (En) is an organochlorine biocide (OCB), that ends up in the environment due to the enzymatic and microsomal activity even though it is not accumulated in living tissue. Endosulfan acts as an organic micro-pollutant which disrupts land as well as aquatic ecosystem. In the present study, we chemically modified endosulfan and conjugated it with a carrier protein to produce an immune response. The generated antibodies were tested for specificity against En, and characterized before further use. Transition Metal Chalcogenides (TMC) showed excellent optoelectrical potential due to its direct bandgap and distinct physical as well as chemical characteristics. Herein, we synthesized a novel nanohybrid using MoSe2 in combination with graphene oxide (GO) and characterized thoroughly. This was similar to graphene-based metal chalcogenides which were further used in this study to fabricate biosensor for the sensitive detection of En. The in-house developed antibodies (En-Ab) were coupled with the nanohybrid to make MoSe2/GO/En-Ab electrode. Fabricated electrode was tested for electrochemical parameters using differential pulse voltammetry (DPV). Working efficiency of the fabricated electrode i.e., limit of detection (LOD), was found to be 7.45 ppt. In conclusion, we hypothesized that the synthesized TMC nanohybrids could be employed for biosensing of endosulfan, and can likely be developed to test field samples.


Assuntos
Grafite , Grafite/química , Endossulfano , Ecossistema , Técnicas Eletroquímicas/métodos , Limite de Detecção
9.
Environ Sci Pollut Res Int ; 30(41): 94940-94949, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542694

RESUMO

Earthworms encompass significant soil faunal biomass and have tremendous potential to provide vital ecosystem services. Earthworms are considered bioindicators of chemical contaminants and can provide early warnings of ecosystem deterioration. Studies pertaining to the accumulation of pesticide residues in earthworm in biomass in agrarian ecosystems are scarce. The Kuttanad agroecosystem (KAE), situated on the southwest coast of India, is one of the few regions globally supporting farming on land below the mean sea level. This investigation was conducted to assess the bioaccumulation of pesticide residues in earthworms from the KAE. The earthworms species Glyphidrilus annandalei collected from agricultural soils of the study area were analyzed for the presence of pesticides residues such as α-BHC, γ-BHC, atrazine, heptachlor, α-chlordane, γ-chlordane, 4,4-DDE, 4,4-DDD, 4,4-DDT, ß-endosulfan, and endrin ketone in their biomass. Analysis of the earthworm samples using a gas chromatograph revealed the presence of ten pesticide residues with notable concentrations (α-BHC, 0.36 ng/g; γ-BHC, 0.41 ng/g; heptachlor, 0.10 ng/g; atrazine, 0.89 ng/g; α-chlordane, 0.07 ng/g; γ-chlordane, 0.10 ng/g; 4,4-DDE, 0.05 ng/g; 4,4-DDD, 0.11 ng/g; 4,4-DDT, 0.31 ng/g; ß-endosulfan, 0.19 ng/g; and endrin ketone, 0.13 ng/g). Six groups of pesticide residues are ΣBHC, ΣDDT, atrazine, Σchlordane, endrin ketone, and ß-endosulfan were observed during bioaccumulation factor analysis, and the results show the following trend: atrazine > ΣBHC > ΣDDT > Σchlordane > Σendosulfan > Σendrin. As earthworms are a crucial component of this region's food chains, bioaccumulation of pesticide residues in earthworms can pause adverse consequences. Increasing trends in pesticide application in the KAE and bioaccumulation of pesticide residues in earthworm biomass can affect the entire food web.


Assuntos
Atrazina , Hidrocarbonetos Clorados , Oligoquetos , Resíduos de Praguicidas , Animais , Resíduos de Praguicidas/análise , Solo/química , Clordano/análise , Ecossistema , DDT/análise , Hidrocarbonetos Clorados/análise , Endossulfano/análise , Endrin , Atrazina/análise , Bioacumulação , Agricultura , Heptacloro/análise , Hexaclorocicloexano/análise
10.
Environ Sci Pollut Res Int ; 30(29): 73393-73404, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188935

RESUMO

In the present study, we determined the developmental toxicity of endosulfan at an elevated ambient temperature using the zebrafish animal model. Zebrafish embryos of various developmental stages were exposed to endosulfan through E3 medium, raised under two selected temperature conditions (28.5 °C and an elevated temperature of 35 °C), and monitored under the microscope. Zebrafish embryos of very early developmental stages (cellular cleavage stages, such as the 64-cell stage) were highly sensitive to the elevated temperature as 37.5% died and 47.5% developed into amorphous type, while only 15.0% of embryos developed as normal embryos without malformation. Zebrafish embryos that were exposed concurrently to endosulfan and an elevated temperature showed stronger developmental defects (arrested epiboly progress, shortened body length, curved trunk) compared to the embryos exposed to either endosulfan or an elevated temperature. The brain structure of the embryos that concurrently were exposed to the elevated temperature and endosulfan was either incompletely developed or malformed. Furthermore, the stress-implicated genes hsp70, p16, and smp30 regulations were synergistically affected by endosulfan treatment under the elevated thermal condition. Overall, the elevated ambient temperature synergistically enhanced the developmental toxicity of endosulfan in zebrafish embryos.


Assuntos
Endossulfano , Peixe-Zebra , Animais , Endossulfano/toxicidade , Temperatura , Desenvolvimento Embrionário , Embrião não Mamífero/anormalidades
11.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985469

RESUMO

Pesticides can be found in beehives for several reasons, including contamination from surrounding crops or for their use by beekeepers, which poses a risk to bee ecosystems and consumers. Therefore, efficient and sensitive methods are needed for determining pesticide residues in bee products. In this study, a new analytical method has been developed and validated to determine seven acaricides (atrazine, chlorpyrifos, chlorfenvinphos, α-endosulfan, bromopropylate, coumaphos, and τ-fluvalinate) in bee pollen using gas chromatography coupled to mass spectrometry. After an optimization study, the best sample treatment was obtained when using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method employing an ethyl acetate and cyclohexane as the extractant mixture, and a mixture of salts for the clean-up step. A chromatographic analysis (<21 min) was performed in an Agilent DB-5MS column, and it was operated under programmed temperature conditions. The method was fully validated in terms of selectivity, limits of detection (0.2-3.1 µg kg-1) and quantification (0.6-9.7 µg kg-1), linearity, matrix effect (<20% in all cases), trueness (recoveries between 80% and 108%), and precision. Finally, the proposed method was applied to analyze commercial bee pollen samples, and some of the target pesticides (chlorfenvinphos, α-endosulfan, coumaphos, and τ-fluvalinate) were detected.


Assuntos
Acaricidas , Clorfenvinfos , Resíduos de Praguicidas , Praguicidas , Abelhas , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cumafos/análise , Clorfenvinfos/análise , Endossulfano/análise , Ecossistema , Praguicidas/análise , Resíduos de Praguicidas/análise , Pólen/química
12.
Sci Total Environ ; 877: 162927, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934928

RESUMO

Long-term nationwide atmospheric monitoring of organochlorine pesticides (OCPs) was performed in South Korea during 2008-2017. Their occurrences, seasonal and temporal variability, sources, and effect of ambient temperature were investigated. The OCPs are pronounced with a mean concentration of total OCPs ranging from 5.2 to 256 pg/Sm3. However, a decrease of 54 % was observed in the mean concentration of total OCPs from 2008 to 2017 associated with regulatory actions. OCP concentrations did not show any variations between the different site types, and OCPs were ubiquitously present at all site types. The mean concentration of total OCPs in summer was two-fold higher than in winter. The concentrations of DRINs, DDTs, ENDOs, and HCHs were significantly higher in summer, but the concentrations of chlordane and heptachlor were higher in winter. The diagnostic ratios identified major sources as ongoing sources, past use, and atmospheric transport. Clausius Clapeyron plots strongly suggested the re-emission of α-endosulfan, ß-endosulfan, α-HCH, and ß-HCH, and ΔHsa (enthalpy of surface air exchange) values suggested the influence of the transport and/or new sources on aldrin, dieldrin, and chlordane. The occurrence of OCPs due to re-emissions, ongoing sources, and long-range atmospheric transport could be a challenge towards the complete phase-out of OCPs in South Korea.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Clorados , Praguicidas , Clordano/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Endossulfano/análise , República da Coreia
13.
Ecotoxicol Environ Saf ; 252: 114595, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753968

RESUMO

2,3,7,8-tet-rachlorodibenzo-p-dioxin (TCDD) and α-endosulfan are two typical persistent organic pollutants (POPs), both of which accumulate in the liver and have potential carcinogenic hepatic effects. The underlying molecular mechanisms of pathogenesis of hepatocellular carcinoma (HCC) remain elusive when exposure to POPs. The aim of this study is to explore the key genes involved in HCC when exposure to TCDD and α-endosulfan by weighted gene co-expression network analysis (WGCNA). First, we performed co-expressed analysis on HCC and normal condition, based on WGCNA. In results, seven co-expressed modules were identified from 56 human liver samples, and the brown module correlated with five stages of HCC. Subsequently, we predicted that human five liver diseases were associated with exposure to TCDD and/or α-endosulfan by Nextbio analysis. Functional enrichment analysis showed that the brown module enriched in oxidation-reduction process, DNA replication, oxidoreductase activity and aging, which were the same as the results when exposure to the mixture of TCDD and α-endosulfan. Lastly, based on the protein-protein interaction network, we identified three novel genes including HK2, EXO1 and PFKP as key genes in HCC associated with exposure to TCDD and α-endosulfan mixture. In addition, survival analysis of key genes in Kaplan-Meier plotter demonstrated that aberrant expression levels of all the three key genes were associated with poor prognosis of HCC. Finally, Western blot analysis confirmed that protein expression levels of PFKP and HK2 in the three exposed groups were significantly elevated, while EXO1 were significantly upregulated when exposure to TCDD and α-endosulfan mixture in HepaRG cells. This study provides a new perspective to the understanding of the genetic mechanism of HCC when exposure to POPs.


Assuntos
Carcinoma Hepatocelular , Poluentes Ambientais , Neoplasias Hepáticas , Dibenzodioxinas Policloradas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Endossulfano , Dibenzodioxinas Policloradas/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Perfilação da Expressão Gênica/métodos , Poluentes Ambientais/toxicidade
14.
Environ Pollut ; 321: 121206, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738882

RESUMO

Antarctica is a remote and pristine region. Yet it plays a vital role in biogeochemical cycles of global anthropogenic contaminants, such as persistent organic pollution (POPs). This work reports the distribution of legacy and new POPs in surface and depth profiles/deeper water of the Southern Indian Ocean (SIO) and the coast of Antarctica (COA). Samples were collected during the 10th Indian Southern Ocean expedition (SOE-10) in the year 2017. Concentrations of ∑HCH (hexachlorocyclohexane), ∑DDT (dichlorodiphenyltrichloroethane), and ∑ENDO (endosulfan) in surface seawater from the SIO region ranged between not detected (ND) to 1.21 pg/Liter (pg L-1) (average. ± s.d.: 0.35 ± 0.42 pg L-1), ND to 1.83 pg L-1 (0.69 ± 84 pg L-1), and ND - to 2.06 pg L-1 (0.56 ± 0., 88 pg L-1), respectively. The concentrations of ∑HCH, ∑DDT, and ∑ENDO in COA ranged from ND to 0.98 pg L-1 (0.25 ± 0.27 pg L-1), ND to 3.61 pg L-1(0.50 ± 1.08 pg L-1), and ND to 2.09 pg L-1 (0.45 ± 0.84 pg L-1), respectively. Concentrations of isomers of endosulfan, and largely of HCHs, suggested an aged source. Some concentration ratios of α-to γ-HCH were close to 1, indicating a contribution from ongoing sources. Results indicate the important role of ocean currents in mediating the transport and detection of OCPs. As such, OCPs dynamics in deeper oceans may play an important role in OCPs cycling in the marine environment.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Regiões Antárticas , Oceano Índico , Endossulfano , Monitoramento Ambiental , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Hexaclorocicloexano/análise , Poluentes Químicos da Água/análise
15.
Chemosphere ; 321: 138148, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36804249

RESUMO

Endosulfan (ES) is an extensively utilized agricultural pesticide in developing countries, despite its life-threatening toxic effects. In this study, we propose a sensitive detection method against endosulfan using multiwalled carbon nanotubes (MWCNT). Herein, we have conjugated endosulfan with bovine serum albumin (BSA) via zero-length conjugation method and successfully confirmed with various biophysical techniques. Endosulfan antibodies (ES-Ab) were raised in-house, fabricated on electrodes coupled with MWCNT, and optimized to achieve maximum peak current by varying the parameters such as MWCNT and antibody concentration, scan rate, temperature, pH, and response time using voltammetry. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and impedance spectroscopies (IS) were performed for electrochemical analysis. The fabricated immunosensor was also evaluated for its cross reactivity with isodrin, chlorpyrifos, and monocrotophos. The limit of detection for ES was found to be 0.184 ppt in standard buffer (range 0.001 ppt-100 ppb). Additionally, spiked ES in water, animal feed, root, and leaf extract samples were also analyzed and validated by HPLC. To summarize, the fabricated electrode can be used for successful detection of endosulfan in the agricultural sector to elude the lethal effect at large.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Animais , Endossulfano , Limite de Detecção , Técnicas Biossensoriais/métodos , Imunoensaio , Eletrodos , Anticorpos , Técnicas Eletroquímicas/métodos
16.
Int J Biol Macromol ; 235: 123670, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36796556

RESUMO

The unregulated use of organochlorine pesticides (OCPs) has been linked to spread of breast cancer (BC), but the underlying biomolecular interactions are unknown. Using a case-control study, we compared OCP blood levels and protein signatures among BC patients. Five pesticides were found in significantly higher concentrations in breast cancer patients than in healthy controls: p',p' dichloro diphenyl trichloroethane (DDT), p'p' dichloro diphenyl dichloroethane (DDD), endosulfan II, delta-hexachlorocyclohexane (dHCH), and heptachlor epoxide A (HTEA). According to the odds ratio analysis, these OCPs, which have been banned for decades, continue to raise the risk of cancer in Indian women. Proteomic analysis of plasma from estrogen receptor-positive breast cancer patients revealed 17 dysregulated proteins, but transthyretin (TTR) was three times higher than in healthy controls, which is further validated by enzyme-linked immunosorbent assays (ELISA). Molecular docking and molecular dynamics studies revealed a competitive affinity between endosulfan II and the thyroxine-binding site of TTR, pointing towards the significance of the competition between thyroxin and endosulfan, resulting in endocrine disruption leading to breast cancer. Our study sheds light on the putative role of TTR in OCP-mediated BC, but more research is needed to decipher the underlying mechanisms that can be used to prevent the carcinogenic effects of these pesticides on women's health.


Assuntos
Neoplasias da Mama , Hidrocarbonetos Clorados , Praguicidas , Humanos , Feminino , Endossulfano/análise , Neoplasias da Mama/induzido quimicamente , Pré-Albumina , Estudos de Casos e Controles , Simulação de Acoplamento Molecular , Proteômica , Praguicidas/análise , Hidrocarbonetos Clorados/análise
17.
J Environ Sci Health B ; 58(1): 51-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36688310

RESUMO

Endosulfan, an organochlorine pesticide, has been understudied in the literature on thyroid cancer. The aim of this ecological study was to assess the correlation between endosulfan exposure and thyroid cancer incidence rates (IRs) in the United States (US). Age-adjusted thyroid cancer IRs per 100,000 people per state for the years 1999 to 2019 were obtained from the Center for Disease Control and Prevention (CDC). To assess the state-level use of endosulfan, data were obtained from the US Geological Survey (USGS). Endosulfan usage estimates (kilograms/acres cropland; quintiles) and thyroid cancer IRs were mapped together. The correlation between age-adjusted thyroid cancer IRs and statewide endosulfan use was calculated using the Spearman correlation. Overall endosulfan usage in the US trended downwards between 1992 and 2007 (T = -0.77; P < 0.001), while thyroid cancer IR trended upwards between 1999 and 2019 (T = 0.69; P < 0.001). There was a statistically significant correlation between 1992 endosulfan use and 2012 (r = 0.32; P = 0.03) and 2014 (r = 0.32; P = 0.03) thyroid cancer IRs. Although restrictions on endosulfan use seem effective, the potential impact of endosulfan exposure remains due to the persistent, semi-volatile, bioaccumulative, and biomagnifying properties of endosulfan metabolites in particular, indicating the need for future thyroid research of highly exposed populations.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Neoplasias da Glândula Tireoide , Humanos , Endossulfano
18.
Environ Pollut ; 320: 121067, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682613

RESUMO

Organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) threaten the environment due to their wide environmental resistance. Environmental paradigms coexist along the Negro River (NR) in Argentina, South America, which flows to the sea below the latitude of 40o S; however, this is the first environmental assessment of OCPs and PAHs in water of the NR for more than 15 years. With 21 sampling sites covering a range of 600 km of river extension, we assessed 16 OCPs and 16 PAHs in suspended particulate material (SPM) with regard to their levels, seasonality, sources, and potential biological risk assessment. Using gas chromatography-mass spectrometry and gas chromatography coupled with electron capture detection, we found an overall mean value for Σ16 OCPs of 648.56 ng. g-1, d.w. Despite a ban spanning 25 years, an increasing trend of accumulation of hexachlorocyclohexanes (HCHs) and endosulfan was shown in the lower valley. The ɑ-HCH/ɤ-HCH and ß-HCH/(ɑ + É¤)-HCH ratios indicated a prevalent usage of technical HCH over lindane and recent HCH inputs. The most abundant compound, α-endosulfan, averaged 141.64 ng. g-1, d.w. and DDX (Σ 4,4'-DDE, 4,4'-DDD, and 4,4'-DDT) averaged 99.98 ng. g-1, d.w. Winter OCP loads in the NR reflected the runoff of the heaviest pesticide application period. We estimated the total discharge of DDT into the Atlantic ocean was 96 g.day-1, added to 458 g of HCHs and 257 g of endosulfans (ɑ + ß + epoxide) adsorbed by the SPM. PAHs occurred widely along the river (38.83 ± 43.52 µg. g-1) and the highest levels coincided with locations with marked anthropogenic-related activity, such as petroleum/gas exploitation facilities. Risk quotient analysis showed a low risk posed by OCPs, but a high risk of potential effects on biota posed by the PAHs, highlighting the need for mitigation measures.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Argentina , Endossulfano/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados/análise , Material Particulado/análise , Praguicidas/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise
19.
Environ Sci Pollut Res Int ; 30(14): 40340-40355, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36609971

RESUMO

The aim of the present study was to determine the occurrence, spatio-temporal variations, source apportioning, and ecological risk assessment of selected PCBs and OCPs in surface water and sediments collected riverine environment of Punjab province, Pakistan. The concentration of ΣOCPs (water: 64-455 ng/L; sediments: 117-616 ng/g) and ΣPCBs (water: 2-132 ng/L; sediments: 3.27-200 ng/g) was found comparatively higher than the levels reported from other parts of the world. The higher concentrations of DDTs and HCHs were detected in both studied matrices, whereas among PCBs, CB-28, 49 and CB-37, 82 were dominant in water and sediments, respectively. The isomeric ratios including α-HCH/γ-HCH, (DDE + DDD) / DDTs, and α /ß-endosulfan reflected the recent use of lindane, technical DDT, and endosulfan in the study area. The WHO-TEQ values of DL-PCBs ranged from 3.6 × 10-6 to 0.115 ng/L and 8.7 × 10-6 to 0.157 ng/g in surface water and sediments in both seasons, respectively. The spatial variation analysis revealed that the sites in the industrial and agricultural zones were highly contaminated. The OCPs and PCBs fluxes to downstream areas were estimated to be 12.4 tons/year and 1.9 tons/year, respectively. The significant ecological risks were estimated to be posed by OCPs and PCBs, as their levels in 67% and 62% of surface water and sediment samples were exceeding the threshold limits, highlighting effects to ecological integrities.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Poluentes Químicos da Água , Estações do Ano , Bifenilos Policlorados/análise , Praguicidas/análise , DDT/análise , Paquistão , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Endossulfano/análise , Medição de Risco , Água/análise , Sedimentos Geológicos
20.
Int J Phytoremediation ; 25(1): 106-114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35416737

RESUMO

Although many countries banned the insecticide endosulfan, it is still an environmental pollutant. Plants metabolize the two diastereomers of the formulations known as technical grade endosulfan (TGE) by two phase I pathways: hydrolysis leading to less toxic derivatives and oxidation giving endosulfan sulfate which is as toxic as endosulfan itself. We assessed the removal, bioaccumulation and phase I metabolization of TGE from water matrices using hairy root clones (HRs) of three edible species, Brassica napus, Raphanus sativus and Capsicum annuum. B. napus and C. annuum HRs removed 86% of TGE from the bioreaction media in 2 and 96 h, respectively, whereas R. sativus HRs removed 91% of TGE within 6 h of biotreatment. In the experiments with B. napus, only endosulfan sulfate was detected in both biomass and medium, whereas R. sativus and C. annuum accumulated endosulfan sulfate and endosulfan alcohol. Besides, endosulfan lactone was detected in C. annuum reaction medium. Acute ichthyotoxicity assays toward Poecilia reticulata showed that media contaminated with TGE lethal levels did not produce mortality after the phytotreatments. This research highlights the feasibility of using HRs to evaluate plant enzymatic abilities toward xenobiotics and their potential for the design of ex situ decontamination processes.


Assuntos
Endossulfano , Inseticidas , Endossulfano/análise , Endossulfano/metabolismo , Endossulfano/toxicidade , Biodegradação Ambiental , Inseticidas/análise , Inseticidas/metabolismo , Inseticidas/toxicidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...